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The transport equations in the mixed state of a pure type II transition-metal superconductor
are obtained by noting that the physically observed transport currents (i.e., the electric current
and the heat current) in the two-band superconductors near H,, are just the sum of the physical
observables in the individual bands. Since the two moving energy gaps in the transition-metal
superconductors have essentially the same form as the moving order parameter in the one-
band superconductors, the calculational techniques devised by Caroli and Maki for evaluating
the observable in pure one-band superconductors near H,, can be applied directly to the evalua-
tion of the physical observables in the individual bands of the two-band superconductors near
Hg. Using the transport equations with the definitions of the flux-flow resistivity and Hall
angles, expressions for these properties are obtained which should be valid for pure transition-
metal superconductors near H,. The two-band expressions are used to analyze the experi-
mental data on the flux-flow resistivity and Hall angle in pure superconducting niobium.

I. INTRODUCTION

Inarecent paper by the author! (hereafter referred
to as I), it was seen that while the two energy gaps
in a pure transition-metal superconductor in a
high magnetic field and a transverse electric field
moved with a common velocity u=E/H,,, their
motions were governed by separate diffusion equa-
tions. The two diffusion constants D, and D, were
chosen such that
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are the physically observed energy gaps, the phys-
ically observed energy gaps being the expectation
values of the operators
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in the system described by the interaction Hamil-
tonian®
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where the operators ny.,, ¥s), and ¥, are de-
fined in I.
The purpose of this paper is to obtain the physi-
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cal observables of quantities such as the electric-
current and heat-current operators in the mixed
state of a pure transition-metal superconductor in
which the two energy gaps are moving with a com-
mon velocity #. In this way, the transport equations
for the two-band superconductor can be obtained.
Then by using the resulting transport equations in
the definitions® of various resistive-state proper-
ties, such as the flux-flow resistivity and Hall
angle, we will be able to obtain expressions for
these properties in pure transition-metal super-
conductors in high magnetic fields. ,

The approach used is an extension of the micro-
scopic theory of Caroli and Maki® to a two-band
superconductor. Since the physical observables
in the two-band superconductors are just the sums
of the same physical observables in the individual
bands, they can be evaluated using the calculational
techniques developed by Maki® for obtaining explicit
forms of the one-band observables. The only modi-
fication that has to be taken in order that Maki’s
techniques may be used is that the role of the order
parameter in the one-band system is taken by the
energy gaps in the two-band calculations. Since
the energy gaps in the two-band superconductor
have essentially the same form as the order param-
eter in the one-band superconductor, no difficulty
will be encountered in the evaluations because of
the substitution. :

The need for using the two-band model of Suhl,
Matthias, and Walker® (SMW) to describe super -
conductivity in the transition metals is clearly
indicated by the recent discoveries of a second
energy gap’ and a second transition temperature®
in niobium. Prior to these discoveries, the exis-
tence of a second energy gap in pure transition-
metal superconductors had been inferred from the
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specific-heat measurements on vanadium® and
niobium. '® Using the numerical values inferred by
Sung and Shen'! from the specific-heat measure-
ments on niobium in the SMW two-band model,
Radhakrishnan'? was able to fit the experimental
data on the temperature variation of the penetration
depth in niobium!? and to obtain the effective masses
of the electrons in the two bands. It should be ex-
pected that any properties of pure transition-metal
superconductors which depend on the motion of the
energy gaps would reflect the presence of a second
energy gap.

1. TWO-BAND TRANSPORT EQUATIONS

We begin by writing down the transport equations
in their most general forms:

|
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where j ‘¢ and j® are the electric and the heat
current, respectively. The coefficients needed for
the above equations to be the transport equations
for the mixed state in a pure transition-metal su-
perconductor in a high magnetic field and a trans-
verse electric field can be determined by looking
at the forms of certain physical observables in the
resistive state of a pure two-band superconductor.
As was shown in I, the physical observable A-('r, t)
of the operator A(7, t) is given by
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where the summation is over the two bands. In
obtaining (5), we have assumed that the operator
A(% t) in the two-band system is just the sum of
the operator in the individual band. '* In (5), 4, is
the energy gap in the ith band and the operators
¥, and #; are defined as

‘1‘1(7; t)= llJp("’, t)‘l’p("’, 1),
n(% 8) =2 07, Dyo(7, D).

The second term in (5) is the quantity which results
from the uniform motion of the energy gaps.

By considering the physical observable in the
two-band superconductor as being just the sum of
the physical observables in the individual bands,
we can easily evaluate (5) since the individual band
observable is in exactly the same form as the
observable in the one-band superconductor, *° ex-
cept for the band designation and the use of the en-
ergy gaps in place of the order parameter. This
substitution will not cause any deviation in the cal-
culations since the two moving energy gaps have
essentially the same form as the moving order
parameter in the one-band superconductor.

Using the results of the appendices, we obtain
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¢ is the Hall angle for the Hall effect caused by -
both bands, Kjg; is the ith-band contribution to the
thermal conductivity in the mixed state, o; is the
ith-band contribution to the normal state de¢ con-
ductivity, N, is the density of state in the ¢th band,
m; is the effective mass of the ith-band electron,
7; is the lifetime of the electrons in the ith band,
P is the coefficient which appears in the thermo-
electric power in the normal state, «; is the sec-
ond Ginzburg-Landau parameter, and
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The two-band coefficients (7) were obtained by
simply summing the contributions of the individual
bands to the observables, i.e.,
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where we have set (V7),=0.

Since we will be interested in comparing our two-
band expressions for the flux-flow resistivity and
the Hall angle with various experimental results,
we set

=M =0, (V1),=0, (11)

which reduces (4) to
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II. FLUX-FLOW RESISTIVITY AND HALL ANGLE

Properties such as the flux-flow resistivity and
Hall angle, which are related to the motion of the
energy gaps, can be obtained for pure transition-
metal superconductors near H,, and in a transverse
electric field simply by using (7) and (12) together
with the definitions of the above properties. As
was done by Caroli and Maki%*® in the case of one-
band superconductors, terms of higher order in
A% will be neglected in order to obtain fairly sim-
ple expressions.

A. Flux-Flow Resistivity

When a fluxoid in a pure type II superconductor

N, + N, my(H,p - H)

near H,, is caused to move by a transverse electric
field, a dissipative effect is seen. This gives rise
to a flux-flow resistance in the superconductor.

A macroscopic model based on hydrodynamic con-
siderations was introduced by Bardeen and Stephen
to describe the motion of the fluxoid. A different
model which gave the same resistance as the Bar-
deen-Stephen model but a different Hall angle was
proposed by Noziéres and Vinen. '* A phenomeno-
logical relation has been obtained by Kim et al. '":

R, B _
R, ™ Hj(0)’
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(14)

where B is the magnetic induction. A microscopic
theory for the flux flow near H_, has been proposed
by Caroli and Maki. #* Their approach was a gen-
eralization of an earlier theory of Schmid. '®* With
the inclusion of the thermal effects on the flux
flows, they were able to obtain for the flux-flow
resistivity in pure type II superconductors near
ch

R, m(H,, - B)

R, l‘neNh.ls[sz(t)_1]+1} ’ (15)‘

where all the terms have been previously defined.
For dirty superconductors near H,,, they found
the flux-flow resistivity was given by

R 41%(0) H
ks 1 1] 3 (1 -—'—z> , (16)

R, 1-1 16[25(t) -
where k, is the normal Ginzburg-Landau parameter.
The reason for presenting the flux-flow resistivity
in the dirty limit will be seen in the later dis-
cussion of the flux-flow data on niobium.
As we have already said, the flux-flow resistiv-

- ity in pure transition-metal superconductors near

Hg; can be obtained from the definition of the flux-
flow resistivity,

Rs= E,/j, . 17
Substituting the definition of E, [See Eq. (12)] into
the definition, we obtain

R;~(0y+ &2/ TK)™?, (18)

where only terms of the same magnitude have been
kept. Then by substituting the two-band coefficients
(7) into the above equation, we obtain for the flux-
flow resistivity of pure transition-metal super-
conductors in high magnetic fields

= - mg
Rf’R"[l mg+my N, meN,{l. 16f§xz(t

MgMg _H
1]+ 1} ~ (mg+ mg)dme 27 N, D J1. 16[265(2) - 1] + 1} ( ch)
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where the last two terms are of the order £y/1 (£,
being the coherence length and ! being the mean
free path). In extremely pure transition metals,
these last two terms vanish.

B. Hall Angle

One of the possible end effects of an external
magnetic field at an applied transverse electric
field on the superconductor is an electric field in-
side the superconductor which is perpendicular to
both the applied magnetic and electric field, This
induced electric field is called the Hall field. The
Hall angle is defined as the ratio of the induced
electric field and the applied electric field, i.e.,

tang~¢=E,/E,. (20)
In the Bardeen-Stephen model, the Hall angle is
given by

tang = w, 7, (21)

where w,=eH/mc; while in the Noziéres-Vinen
model, it is given by

tang = w7, (22)

where w=eH,/mc. By including the effects of

the thermal current in the microscopic theory,

Maki® obtained
7eB mweTP

¢:mc * oK

Sp(#), (23)

where Sp(t) is the entropy carried by a single vor-
tex and the other terms have been defined in Sec.
II. As is seen, the microscopic theory predicts a
Hall angle consistent with the Bardeen-Stephen
model.

As was done to obtain the flux-flow resistivity in
transition-metal superconductors, the Hall angle
in a pure two-band superconductor near H, is ob-
tained by substituting the appropriate equations (12)
into the definition (20). Keeping only terms of the
same magnitude, we get for the Hall angle in a pure
transition-metal superconductor

Oz @y ay

tang~ == 2 -

24
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Tn extremely pure two-band superconductors, the
last term in the above expression give rise to a
negligible contribution, so that when one substitutes
the two-band coefficients (7) into (24), the Hall an-
gle is given by

2
¢=(1_9g_1+_n%£fﬂ)m+

0s 1+7m5 Xos

g4 1472 Xog

o, 1+7 Xq, Mg, (25)

r

where 74y and X4y were defined in Sec. IIL

IV. COMPARISON WITH EXPERIMENTAL MEASUREMENTS

In attempting to analyze the experimental data
on those properties which are related to the moving
vortex structure in transition-metal superconduc-
tors using the two-band expressions obtained in
Sec. III, it is important to realize that it is neces-
sary to categorize the transition-metal supercon-
ductors according to their purities. This categori-
zation is important since it has been shown by
Garland® and Gusman?® that only for those transi-
tion-metal superconductors satisfying the pure
limit condition I> £\(! being the electronic mean
free path and #, being the coherence length) or
the intermediate-purity limit condition 7~£,, will
the two-band model be appropriate. In these two
limits, there exist two different sets of wave states,
one for each band. There is only one energy gap
in the intermediate limit, while there are two
energy gaps in the pure limit. For transition-
metal superconductors in the dirty limit [ <&,
the impurity concentration is sufficient to complete-
ly mix the electrons in the two bands together so
that the BCS theory holds. It goes without saying
that there is only one energy gap in the dirty tran-
sition-metal superconductors. Because the calcu-
lational technique used in this paper requires that
1> ¢,, our attention must center only on those tran-
sition-metal superconductors falling within the
pure limit. A clear indication that it would be
wrong to use the two-band expressions of Sec. III
to analyze the data on the intermediate-purity super-
conductors is seen in the field dependence in the
thermal conductivity in intermediate-purity niobium
superconductors in high magnetic fields.?' The
two-band expressions for the thermal conductivity
in pure transition-metal superconductors near H,
predict a (H,— H)"/2 dependence instead of the linear
dependence seen by Wasim and Zebouni in their
measurements on intermediate-purity niobium su-
perconductors.

A. Flux-Flow Resistivity

Recent measurements of the flux-flow resistivity
in pure niobium superconductors having residual
resistivity ratios (RRR) of 550 and 620 by Huebener
et al. ® have cast some doubt on the microscopic
theory of Caroli and Maki* (as modified later by
Maki). ° In analyzing their data by looking at the
slope

8(R,/R,)
/)
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Huebener et al. came to the conclusion that the
flux-flow resistivity in their samples obeyed the
dirty-limit equation (16), i.e., the experimental
slope looked more like

4x2(0)

He Ry 26

R, dH 1.16[2«Xt)-1]+1 (26)
than the pure-limit slope

_I‘Ij_g_ dHc m ch . (27)

R, dH Nem 1.16[2k3(t)—1]+1

When they substituted numerical values into the
pure-limit slope, they obtained for the values of
the slope 0.058 at 1.98 K and 0. 095 at 4. 22 K.

The observed slopes for the RRR 620 sample at the
two temperatures were 0.8 at 1.98 K and 1. 07 at
4. 22 K, which are close to the values predicted by
the dirty-limit slope.

Since the residual electrical resistivity of the
specimens used clearly establishes that the specimens
belong to the pure limit category, one must conclude
that the microscopic theory of Caroli and Maki is
not valid for pure niobium superconductors in high
magnetic fields. It is the opinion of the author that
the difficulty arises from the neglect of the two-band
nature of niobium. Recent tunneling experiments
on niobium of less purity (RRR 300) have shown the
existence of a second energy gap.” Therefore, the
flux-flow resistivity should be given by the two-

x
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o
>
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1 2 3 ¥
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FIG. 1. 8(R/R,)/8(H/H,) vs temperature at fields

just below H,y. (X) are the experimental points for a nio-
bium superconductor (RRR 620) as measured by Huebener,
Kampwirth, and Seher. Solid curve represents the be-
havior of the two-band flux-flow resistivity slope when

the numerical parameters for a RRR 110 niobium super-
conductor are used in the two-band flux-flow expression.
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FIG. 2. Hall angle tan¢ vs the reduced field H/H,,.
(®) are the experimental points for a RRR 6500 niobium
superconductor at 4.2 K as measured by Fiory:and Serin.
The horizontal line in the middle of the figure would repre-
sent the behavior of the Hall angle if the model of
Noziéres and Vinen correctly describes the flux flow in
pure type II superconductors. The dashed line represents
the behavior if the Bardeen-Stephen model describes the
flux flow.

band expression (19). Using the two-band values
obtained for a RRR 110 sample [m, =70 m, 2 m,
=1.9 m (m being the free-electron mass), and N,/
(Ng+N,) =0.015] into the two-band expression

Hy dR, ___ms
R, dH mg+m, N

Ns+Nd md H&
meN, 1,16[2k2(#)-1]+1 "’

(28)

we obtain for the value of the slope 0.73 at 1.98 K
and 1, 19 at 4. 22 K. The behavior of the two-band
slope along with the observed values are shown in
Fig. 1.

A better fit may occur if the two-band parameters
for the samples used by Huebener et al. were used
instead of the numerical parameters of a RRR 110
niobium superconductor.

B. Hall Angle

For extremely pure type II superconductors, the
second term in angle (23) obtained by Maki vanishes
so that his results are the same as that in the Bar-
deen-Stephen (BS) model. In the BS model, the Hall
angle is the same for both the normal and supercon-
ducting states of the metal. Therefore one would
not expect the slope of the Hall angle versus the
magnetic field to change at H,.
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However, recent measurements of the Hall angle
in niobium samples with RRR 6500 % give support
to the model of Nozieres and Vinen, which predicts
a constant Hall angle below the transition point in
Fig. 2, i.e.,

tan¢ = TeH,/mc = const. (29)

Fiory and Serin® interpreted the experimental
points as lying on a straight line (a constant Hall
angle) and that the few points at the lower fields
were spurious. If, however, we interpret the spu-
rious points as the beginning of a new field depen-
dence in the Hall angle, the two-band expression
for the Hall angle can explain qualitatively the ob-
served behavior,

Above H,, both X, and X vanish so that the
Hall angle is just equal to 7,. Thus the linear field
dependence of the Hall angle above H, is a natural
consequence of our two-band expression. Since
the X,'s become finite below H,, the slope of the
field dependence of the Hall angle changes at the
critical point in agreement with the observed be-
‘havior. (The Hall angle obtained by Maki cannot
explain the change in the slope at H,.)

APPENDIX A: PHYSICALLY OBSERVED ELECTRIC
CURRENT

As was indicated in Sec. II, the physically ob-
served electric current in a pure two-band super-
conductor containing moving energy gaps is obtained
by substituting the two-band electric-current oper-
ator

j(e )(,r’ t) =Z j§8)(,r, t)
i

ie d)za (T,t)l,bta(?‘, t)

[v=-v'=-2ie A(]

i,0 Zmi rar’
(A1)

into (5) to get
7Oy, 1) =20, O, 1), (A2

where the individual band’s contribution j {¢, the
physically observed current, is of the form of the
one-band observable found in Refs. 4 and 5. Be-
cause the energy gaps in the two-band superconduc-
tor are of the same form as the order parameter
in the one-band superconductor, the evaluations

of the j*”’s will follow exactly the procedures in
the two references cited.

By adding together the explicit expressions for
jf"’, the physically observed electric current in
pure transition-metal superconductors near H
is obtained; i.e.,,

(e) S
<1+77 +77¢)

I-MING TANG

|eo

e, (328) eto) (3 + 1257
u 475eE

+eNd(;’ T) Al (pd)(—-— + T—T) , (A3

357 == ¢(1+n2 1+n3)E

4T,eE

~en, (21rT) a5 glo )

- eN,,(V“F) zg(pd

41,, eE, (A9

where

1 (' az exp(- p,; £2)
glo)) = ﬁ_w(l ) A G ]
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The first two terms in both j¢ and 7 are the
contributions of the electric current in the normal
state. The use of the Hall angle in these terms
ensures that the electric current in the y direction
is the result of the full Hall effect.

APPENDIX B: PHYSICALLY OBSERVED HEAT CURRENT

The physically observed heat current in a pure
two-band superconductor containing moving energy
gaps is obtained by substituting the two-band heat
operator“

Z] ) _ %; %} [[V 2ieA(7)] (5;7 —2ie¢)

+[ '+ 20eA ()] (%_Zieq,)] Xl st
{

r=r’
(B1)
into (5). As was the case with the electric current,
the physically observed two-band heat current is
just the sum of the physically observed heat cur-
rents in the individual bands. Using the same cal-
culational techniques found in Ref. 5, we obtain

- 1 n
“(h) _ JLE -
Fa = Ei <—-2-1+17‘ TPE+M‘L0‘ T+m, E), (B2)

-un__z (_‘LE TPE+M,L,‘(t)E+—‘—TgLE) ’
i

(B3)
where M;, L, and L,; are defined in Ref. 5.
Since Lg; is much larger than L,;, the terms con-
taining L,; can be neglected so that we get

1
Oy = TP =1, X,
1§m( X1y

1
Olg=—£; m‘g (¢TP+X”) . (B4)
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Tunneling into Weakly Coupled Films of Aluminum and Tin in Proximity*
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Tunneling experiments have been performed into the N side of N-S (aluminum-tin) proximity
sandwiches evaporated at room temperature onto an oxidized aluminum electrode B. The
coupling between the N and S films was made weak by allowing slight oxidation to occur at the
interface. When B is normal, the normalized tunneling conductance of these junctions in the
vicinity of the critical temperature of the proximity sandwich is markedly different from that
of junctions formed between B and an ordinary (BCS) superconductor. When B is supercon-
ducting and the thickness of the N film is made about dy=~100 & ~fy d5, where dg is the thick-
ness of the S film, a double-peaked structure is observed in the tunnel conductance as a func-
tion of applied voltage. The properties of the proximity sandwich depend on the amount of oxi-
dation at the N-S interface. Self-consistent calculations have been performed using the McMillan
model of proximity sandwiches and treating the barrier transmission as a parameter. Compar-
ison of these calculations with the experimental results shows satisfactory quantitative agree-

ment.

INTRODUCTION

Recently a simple theoretical model of the prox-
imity effect between superposed normal (N) and
superconducting (S) metal films has been proposed
by McMillan! and calculations of the transition tem-
perature, energy gap, and electronic density of
states were made for comparison with the results
of tunneling experiments. He treats, by second-
order self-consistent perturbation theory, a model

in which thin metal films are coupled by tunneling
through a barrier at the interface. Experiments by
Adkins and Kington? and by Freake and Adkins®
showed reasonable agreement with general features
of the theory, which is as much as could be ex-
pected, since their films were rather strongly
coupled and the theory only applies strictly to weak
coupling between the two films.

The coupling may be weakened by allowing a very
thin oxide layer with an electron transmission prob-



